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Chaos and Lyapunov exponents in classical and quantal distribution dynamics
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~Received 24 July 1996; revised manuscript received 23 April 1997!

We analytically establish the role of a spectrum of Lyapunov exponents in the evolution of phase-space
distributionsr(p,q). Of particular interest isl2 , an exponent that quantifies the rate at which chaotically
evolving distributions acquire structure at increasingly smaller scales and is generally larger than the maximal
Lyapunov exponentl for trajectories. The approach is trajectory independent and is therefore applicable to
both classical and quantum mechanics. In the latter case we show that the\→0 limit yields the classical, fully
chaotic, result for the quantum cat map.@S1063-651X~97!00111-6#

PACS number~s!: 05.45.1b, 03.65.Sq
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The canonical measure of chaotic Hamiltonian dynam
is the nonzero Lyapunov exponent@1#, which quantifies the
rate of exponential divergence of neighboring classical
jectories. This measure has resisted translation to the Hil
space of phase-space distributions, where the linearity of
evolution equation precludes the asymptotic exponential
vergence of initially ‘‘close’’ distributions. Rather, chaos
distributions is described in terms of the character of
spectrum of the Liouville operator@2#, a difficult property to
access. As a consequence, a quantitative diagnostic fo
manifestation and characterization of chaos in the evolu
of distributions has proven elusive, although several con
tures and limited diagnostics have been proposed@3–7#.

In this article we analytically establish a diagnostic
chaos for distributions that is independent of trajectories
is valid for arbitrary initial distributions and at asymptot
times. In particular, we expose the role of an entire spect
of generalized Lyapunov exponentslg @8# in the evolution
of distributions. Although we derive the results by consid
ing phase-space trajectories, our final expressions forlg de-
pend solely on the evolution of the phase-space distribut
We thus have a means of studying the role of Lyapun
exponents in the evolution of both classical and quant
systems, as shown below.

We also show that the particular exponentl2 , which is
generally larger than the standard trajectory-based maxim
Lyapunov exponentl @8#, assumes particular importance
the arbiter of the growth of phase-space structure. T
growth has been thought@9# to characterize chaos for distr
butions. In particular, we show that~i! a distribution evolves
so as to acquire structure at increasingly smaller scales a
exponential rate given byl2 , ~ii ! the rate at which the infor-
mation in the system moves to the smaller scales~and hence
the rate at which it relaxes! is given byl2 and~iii ! the error
in a calculation for a fixed level of resolution increases e
ponentially in time withl2 .

Consider the usual computation of the Lyapunov ex
nents@1#: Let the equations of motion of a point in pha
space beẋi5 f i(x), wherex @[(q,p) for Hamiltonian sys-
tems# is the vector denoting all phase-space variables
individual vector components are denoted by subscripts.
variables are scaled to be dimensionless so that we may
fine a metric in phase space. The equations of motion for
vectors in the tangent space are obtained by linearizing
561063-651X/97/56~5!/5174~4!/$10.00
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equations of motion@substituting x1§ into ẋi5 f i(x)#
around this fiducial trajectory:

d§ i

dt
5(

j
M i j § j , ~1!

whereMi j 5 ] f j /]xi is the Jacobian matrix at the pointx(t).
If this system is evolved forward in time, then we can obta
the maximal Lyapunov exponent as~theorems A and B, Ref
@1#!

lim
t→`

1

t
ln@ u§~ t !u#5l~x!, ~2!

where u u defines the standard norm in phase space and
result is independent of§ except for a set of vanishing mea
sure. For a Hamiltonian system the set of exponents is
changed under the transformationl→2l as a consequenc
of time-reflection symmetry.

We use the foregoing to derive the equations of evolut
for the first-order derivatives of a distribution. The assum
tions necessary in our analysis imply that the results are v
for all distributions that evolve nontrivially under the Liou
ville equation and are differentiable: This specifically e
cludesd-function distributions~point trajectories! and time-
invariant solutions to Liouville’s equation. Consider th
relationship between the densities at the pointx andx1§:

r~x1§!5r~x!1(
i

§ i

]

]xi
r~x!, ~3!

where we neglect higher-order terms, as in the trajecto
based derivation. Taking the total time derivative of bo
sides and noting thatdr(x)/dt[0[ dr(x1§)/dt, we get

(
i

d

dt F§ i S ]r

]xi
D G5(

i
Fd§ i

dt

]r

]xi
1§ i

d

dt S ]r

]xi
D G50, ~4!

where here and belowr and its derivatives are evaluated
x. Using Eq.~1!, we get

(
i

F(
j

M i j § j S ]r

]xi
D G1(

j
F§ j

d

dt S ]r

]xj
D G

50 ~5!
5174 © 1997 The American Physical Society
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⇒(
j

§ j H(
i

FMi j S ]r

]xi
D G1

d

dt S ]r

]xj
D J 50 ~6!

⇒ d

dt S ]r

]xj
D52(

i
M i j S ]r

]xi
D , ~7!

the last equality following from the independence of the va
ous§ j . Equations~1! and~7! for the evolution of§ and¹r,
respectively, are identical except for a minus sign. T
makes physical sense: Since the number of points canno
created or destroyed along trajectories, the density shar
~flattens! along the direction in which points move clos
~further!. This being the case,l is directly reflected in the
gradient of the distribution¹r„x(t)… at asymptotic times a
almost every phase-space point@10# in the chaotic region.
Remembering the reflection symmetry of the Lyapunov
ponents, the maximal Lyapunov exponent may hence
equally well computed as

l~x!5 lim
t→`

1

t
ln@ u¹r„x~ t !…u#. ~8!

We now consider the averaged quantitiesxg where

xg[S Tr@ u¹r„x~ t !…ug#

4p2 Tr@rg
„x~ t !…# D

1/g

. ~9!

Here Tr indicates the trace or integration over phase sp
andg is an arbitrary real number; note that the denomina
Tr@rg

„x(t)…# is a constant for Hamiltonian evolution. Se
eral interesting properties have been established for simil
constructed averages using§ instead of¹r @8#. Using the
same approach, since Eqs.~2! and ~8! are identical, we get
that the following properties also hold forlg defined via Eq.
~9!: ~i! A spectrum of generalized Lyapunov exponents c
be defined through

lim
t→`

1

t
ln~xg!5lg . ~10!

~ii ! The ‘‘usual’’ maximal Lyapunov exponentl is a mem-
ber of the spectrum limg→0lg5l, and~iii ! lg is concave in
g, i.e., if g1,g2 , thenlg1

<lg2
. Note that by defining the

averages in terms of¹r rather than§, the quantitiesxg and
lg are independent of trajectories.

We note that the dependence oflg on g arises due to the
variation in local stretching rates in different regions
phase space. Hence, for a system where the local stretc
rate is a constant,lg is independent ofg and equals the
maximum Lyapunov exponentl.

Considerable physical insight emerges by consideringl2
and the quantityx2(t) in Fourier space. That is, con
sider the Fourier expansion of a distributionr(q,p)
5(n,mrn,m(t) f n,m , where f n,m(p,q)5exp$2pi(np1mq)%.
We use a two-dimensional discrete Fourier basis for simp
ity; all arguments generalize to multiple dimensions a
Fourier integrals. In Fourier spacex2(t) is of the form
-

s
be
ns

-
e
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r

ly

n
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-
d

x2
2~ t ![

Tr@ u¹r„x~ t !…u2#

4p2 Tr@r2
„x~ t !…#

5

(
n,m

~n21m2!urn,m~ t !u2

(
n,m

urn,m~ t !u2
.

~11!

Hencex2 is the root-mean-square Fourier radius, measur
the Fourier-space extent of the phase-space distribut
Equation~10! shows that

lim
t→`

1

t
ln~x2!5l2 ~12!

or that, for a chaotic system,x2 increases exponentially with
time. Thus, since the higher (unu,umu) modes correspond to
structure at smaller scales, a distribution moves expon
tially in time, with ratel2 , from structure at a discernible
scale to structure at extremely small scales. We can re
this to the loss of accuracy associated with the chaotic e
lution of point trajectories as follows@11#. All the informa-
tion about the distribution is encoded in the initial Fouri
basis expansion; asx2 grows, this information leaves an
finite range ofunu,umu exponentially fast. Attempting to ac
count for all Fourier modes corresponds to retaining an i
nite amount of information and is inconsistent with a finit
resolution measurement in phase space. Thus Fourier m
with mode numbers greater than somenmax,mmax, where
1/nmax, 1/mmax are the limits of resolution inp,q respec-
tively, are effectively nonobservable and the informati
therein not retrievable. In this sense the evolution of a c
otic distribution can be reconciled with the exponential lo
of accuracy inherent in the chaotic evolution of trajectori
also a consequence of finite measurement capability.

Equation~10! provides deep insights into the relation b
tween the Lyapunov exponents and distribution dynam
but should not be regarded as a competitive tool to comp
Lyapunov exponents when trajectories can be calcula
However, sincexg(t) no longer relies on trajectories, w
may now study it for quantum mechanical phase-space
tributions, thus analyzing ‘‘quantum chaos,’’ i.e., the effe
of chaos on quantal evolution. Again,x2 proves particularly
valuable since, by integration by parts,

x2
2~ t ![

Tr@ u¹ru2#

4p2 Tr@r2#
52

Tr@r¹2r#

4p2 Tr@r2#
. ~13!

Noting that¹2r[ˆp,$p,r%‰1ˆq,$q,r%‰, where $,% denotes
the Poisson bracket, we may now perform the standard qu
tization $A,B%→2( i /\)@Â,B̂# to yield a quantalx2 that is
independent of the representation. In the Wigner-Weyl@13#
representation it has precisely the classical form@Eq. ~13!#,
with r replaced by the Wigner functionW(q,p).

As an example of the insights afforded by this approa
we consider the cat map on the torus, which is a classicaK
system @12# and has been shown recently@7# to display
smooth quantum-classical correspondence. The dynamic
this system, whose classical and quantal propagators for
tributions are known analytically@14#, are those of a kicked
oscillator with Hamiltonian@11#
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H5p2/2m1eq2/2 (
s52`

`

d~s2t/T!, ~14!

restricted to a torus 0<q,a, 0<p,b. The cat map corre-
sponds to the choiceh5Tb/ma51 andj52eTa/b51 and
a5h/ab acts as a dimensionless form of Planck’s const
for this problem. Two other cases of interest we study are
~stable! elliptic map~h51, j521! and the borderline para
bolic case~h51, j50!. We note that this classical syste
has a constant Jacobian matrix andxg[x is independent of
g.

We then anticipate that~i! for the stable systemx oscil-
lates as a function of time,~ii ! x grows linearly for the para-
bolic case, and~iii ! a chaotic system hasx growing exponen-
tially in time with the asymptotic rate given byl. This
behavior is indeed confirmed computationally, as shown
Fig. 1, for these three maps. We emphasize that~i! the be-
havior is independent of the initial distribution~the distribu-
tions used here were randomly initialized! and ~ii ! in the
chaotic case, there is no saturation ofx(t) even though the
phase-space is bounded.

In the quantal case we study the dependence ofx2(t) on
the degree of classicality of the system, that is, the value
a. To eliminate kinematical effects of changinga we con-
sider the evolution of Wigner distributions that are initial
of the Gaussian form

W~q,p!5Nb expF2
~q2bq0!2

b2sq
2 GexpF2

~p2bp0!2

b2sp
2 G ,

~15!

whereb is a scaling variable~see below!, Nb is a normal-
ization factor, and (bq0 ,bp0) specifies the location of the
Gaussian of width (bsq ,bsp) in a phase space of dimen
sionb2ab. Sincea5h/b2ab, by increasingb we approach
the classical limit while preserving the rati
(b2sqsp /b2ab) of the volume of the initial distribution to
the volume of phase space. Here we choose this ratio
'0.0175, sufficiently large to display quantum effects
relatively early times. Note that for these large initial dist

FIG. 1. x as a function of time for the classical elliptic, par
bolic, and cat maps.
t
e

n

of

as
t

butions, the approximate methods of measuring the sep
tion of centroids@7# or the growth of second moments@6#
fail to detect the existence of chaos, even for the class
system. Our results are displayed in Fig. 2.

For the classical cat~h50, ba5bb51!, shown again for
comparison,x2(t) grows exponentially after a short tran
sient, with a rate equal tol. The behavior ofx2 for the
quantized cat map is shown fora51025, 1022, and 1021.
Near the classical limit~a51025, h51, ba5bb5316.2!
x2 exhibits exponential growth, indistinguishable from th
classical behavior on the finite Fourier grid~of size
204832048! used in our computations. However, asa is
increased to 1022 ~h51, ba5bb510! the initial growth of
x2 is seen to be faster than that of the classical cat m
suggesting that the amount of structure in the quantal dis
bution at short times actuallyincreasesrelative to the clas-
sical one. This is indeed the case since one expects the q
tal W(q,p) to adiabatically follow the classicalr(q,p), but
with added fringes@15# ~interference structures!. Such inter-
ference structures can be seen in contour maps of the ev
ing distributions. For example, an examination of Figs. 1
of Ref. @7# at t54T shows clearly that the distribution with
a51022 has far more structure at finer scales than does
distribution with a51025. This, of course, implies greate
support for the distribution at larger Fourier node numbe
leading to largerx2 values. However, supraclassical grow
does not persist for largera or for longer time because
second quantal effect kicks in: Quantal distributions res
the growth of structure at scales smaller than\ @15#, imply-
ing that the support of the distribution travels slowly acro
the 1/a boundary in Fourier space. This is marked by a cle
slowdown of the growth atx2'1005O(1/a). As a is in-
creased to 1021 ~h51, ba5bb53.162!, the initial rapid
growth saturates in one time step, resulting in a slowly gro
ing x2 . The interplay between the two effects thus implies
general a finite value ofa at which the quantum system
acquires structure maximally rapidly for early times. No
also that the initial differences between the various value
x2 in Fig. 2 is exaggerated by the fact that we are us
discrete time steps, which are themselves of the order of 1l2
in our model system.

FIG. 2. x2(t) for the classical (a50) and quantal~a51021,
1022, and 1025! cat map.
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56 5177CHAOS AND LYAPUNOV EXPONENTS IN CLASSICAL . . .
Since the quantal propagator is a smooth function ofa,
the results at larger values ofa imply that on the full~infi-
nite! Fourier grid the quantalx2 , even at the smallest value
of a, will ultimately slow down, reflecting the nonergod
nature of the quantum map@14#. However, and this point is
significant, for any finite resolution there is always ana suf-
ficiently small such that the classical and quantal beha
are indistinguishably chaotic. Thus the variouslg govern the
behavior of classical and quantal distributions in precis
the same manner in the limit\→0, as manifest in the behav
ior of x2 . Note that the form ofx2(t) enables us to verify
this behavior without masking effects arising from the cho
of broad initial distributions or from saturation and rela
ation in the finite phase space~see the discussion in Ref.@7#!.

In summary, we have provided a quantitative demons
tion of the role of Lyapunov exponents in the behavior
classical and quantal distributions and have identifiedx2(t)
as a measure of the increasingly fine detailed structure o
distribution. We have thus related the generalized Lyapu
.

s
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y

e

-
f

he
v

exponents directly to the properties of distributions, indep
dent of trajectories. Our approach is valid for arbitrary init
distributions and asymptotic times, unlike other metho
@6,7#, and has been explicitly derived from the definition
Lyapunov exponents, unlike previous conjectures@3–5#. In
particular, it avoids the need to introduce perturbations
define the stability of distributions@3# and avoids basis-
dependent definitions of chaos in distributions@4#. Rather, it
provides a consistent understanding of the role of Lyapu
exponents in the dynamics of classical distributions and
fords a method of connecting Lyapunov exponents to
behavior of quantal distributions in the semiclassical lim
\→0.

Note added in proof. Recently we found that our work
overlaps that in Y. Gu, Phys. Lett. A149, 95 ~1990!.

This research was supported by the Natural Sciences
Engineering Research Council of Canada. A.K.P. would l
to thank Salman Habib for useful discussions.
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