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Chaos and Lyapunov exponents in classical and quantal distribution dynamics
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We analytically establish the role of a spectrum of Lyapunov exponents in the evolution of phase-space
distributionsp(p,q). Of particular interest is\,, an exponent that quantifies the rate at which chaotically
evolving distributions acquire structure at increasingly smaller scales and is generally larger than the maximal
Lyapunov exponenk for trajectories. The approach is trajectory independent and is therefore applicable to
both classical and quantum mechanics. In the latter case we show thattbdimit yields the classical, fully
chaotic, result for the quantum cat m§f1063-651X%97)00111-9

PACS numbds): 05.45:+b, 03.65.Sq

The canonical measure of chaotic Hamiltonian dynamicsquations of motion[substituting x+s into x;=f;(x)]
is the nonzero Lyapunov exponddi], which quantifies the around this fiducial trajectory:
rate of exponential divergence of neighboring classical tra-
jectories. This measure has resisted translation to the Hilbert ﬁzg M. 1)
space of phase-space distributions, where the linearity of the dt < W0
evolution equation precludes the asymptotic exponential di- _ ) _ )
vergence of initially “close” distributions. Rather, chaos in WhereM;;= df;/dx; is the Jacobian matrix at the pom(t).
distributions is described in terms of the character of thdf this system is evolved forward in time, then we can obtain
spectrum of the Liouville operatg®], a difficult property to ~ the maximal Lyapunov exponent é&feorems A and B, Ref.
access. As a consequence, a quantitative diagnostic for thé))
manifestation and characterization of chaos in the evolution 1
of distributions has proven elusive, although several conjec- lim —In[[s(t)|1=\(x), 2
tures and limited diagnostics have been propdSed]. too L

In this article we analytically establish a diagnostic of

chaos for distributions that is independent of trajectories andhere|| defines the standard norm in phase space and the
is valid for arbitrary initial distributions and at asymptotic result is independent af except for a set of vanishing mea-
times. In particular, we expose the role of an entire spectrunure. For a Hamiltonian system the set of exponents is un-
of generalized Lyapunov exponenis [8] in the evolution cha_nged unde_r the transformatiar- —\ as a consequence

of distributions. Although we derive the results by consider-Of time-reflection symmetry. _ .
ing phase-space trajectories, our final expression jafe- We use the foregoing to derive the equations of evolution
pend solely on the evolution of the phase-space distributiorf._or the flrst-orde_r derivatives _of_ a distribution. The assump-
We thus have a means of studying the role of Lyapuno\ions necessary in our analysis imply that the results are valid

systems, as shown below. ville equation and are differentiable: This specifically ex-

We also show that the particular exponent, which is  cludesé-function distributions(point trajectories and time-
generally larger than the standard trajectory-based maximuffvariant solutions to Liouville’s equation. Consider the
the arbiter of the growth of phase-space structure. This P
gro_vvth has bee;n though®] to characteri_ze _cha_os for distri- p(x+g):p(x)+z S Tp(x)’ (3)
butions. In particular, we show théb a distribution evolves i Xi

SO as to acquire structure at increasingly smaller scales at E\I/vrhere we nealect higher-order terms. as in the traiectory-
exponential rate given by,, (ii) the rate at which the infor- 9 g ’ J Y

o based derivation. Taking the total time derivative of both
mation in the system moves to the smaller scéesl hence . : A
the rate at which it relaxgss given by, andiii) the error ~ SI0€S and noting thatp(x)/dt=0= dp(x+s)/dt, we get
in a calculation for a fixed level of resolution increases ex- d ap _y ds; dp . d {ap
Silax ||~ 4 |dt ax  Sdt | ax

ponentially in time withi,. 2 at
Consider the usual computation of the Lyapunov expo- :

nents[1]: Let the equations of motion of a point in phase \here here and below and its derivatives are evaluated at

space bex;=f;(x), wherex [=(q,p) for Hamiltonian sys- Using Eq.(1), we get

temg is the vector denoting all phase-space variables and '

0, (4)

individual vector components are denoted by subscripts. Our ap d(adp
variables are scaled to be dimensionless so that we may de- Z [2 Mijgj((;_x +Z Sj ﬁ(ﬁ
fine a metric in phase space. The equations of motion for the . : !
vectors in the tangent space are obtained by linearizing the =0 (5)
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)|, 4 o)) sl
Xz(t)=4772 Tl’[pz(X(t))] - 2 | (t)|2
Pn,m
:di(a_p :_2 Mij<(?_p>y 7) n,m
tl ax; T Ix; (11)

Hencey, is the root-mean-square Fourier radius, measuring
the Fourier-space extent of the phase-space distribution.
Equation(10) shows that

the last equality following from the independence of the vari-
ouss;. Equations(1) and(7) for the evolution ofs andVp,
respectively, are identical except for a minus sign. This
makes physical sense: Since the number of points cannot be

created or destroyed along trajectories, the density sharpens lim 1'”()(2):)\2 (12)
(flatteng along the direction in which points move closer o L

(furthen. This being the case, is directly reflected in the

gradient of the distributiorV p(x(t)) at asymptotic times at o that, for a chaotic systeny, increases exponentially with
almost every phase-space pofi0] in the chaotic region. time. Thus, since the highetr(,|m|) modes correspond to
Remembering the reflection symmetry of the Lyapunov exstrycture at smaller scales, a distribution moves exponen-
ponents, the maximal Lyapunov exponent may hence bgajly in time, with rate\,, from structure at a discernible
equally well computed as scale to structure at extremely small scales. We can relate
this to the loss of accuracy associated with the chaotic evo-
1 lution of point trajectories as followfl1]. All the informa-
AO)= lim = In[[Vp(x(D))[]. ®  tion about the distribution is encoded in the initial Fourier
o basis expansion; ag, grows, this information leaves any
finite range of|n|,|m| exponentially fast. Attempting to ac-
count for all Fourier modes corresponds to retaining an infi-
nite amount of information and is inconsistent with a finite-
[ TIVex()] |\ g  resolution measurement in phase space. Thus Fourier modes
Xy=\ 442 T p?(x(1)]) ©) with mode numbers greater than somg,,,Myax, Where
1Npax, Imya @re the limits of resolution im,q respec-

Here Tr indicates the trace or integration over phase spadively, are effectively nonobservable and the information
andy is an arbitrary real number; note that the denominatoth€rein not retrievable. In this sense the evolution of a cha-
T p?(x(1))] is a constant for Hamiltonian evolution. Sev- ©fic distribution can be reconciled with the exponential loss
eral interesting properties have been established for similarl§f @ccuracy inherent in the chaotic evolution of trajectories,
constructed averages usirginstead ofVp [8]. Using the IS0 @ consequence of finite measurement capability.
same approach, since Edqg) and (8) are identical, we get Equation(10) provides deep insights |_nto.the. relation bg—
that the following properties also hold far, defined via Eq. Ween the Lyapunov exponents and distribution dynamics

(9): (i) A spectrum of generalized Lyapunov exponents carPut should not be regarded as a competitive tool to compute
be defined through Lyapunov exponents when trajectories can be calculated.

However, sincey,(t) no longer relies on trajectories, we
1 may now study it for quantum mechanical phase-space dis-
lim ~In(x,)=\,. (10)  tributions, thus analyzing “quantum chaos,” i.e., the effect
te b of chaos on quantal evolution. Agaig, proves particularly
valuable since, by integration by parts,

We now consider the averaged quantitigswhere

(il) The “usual” maximal Lyapunov exponent is a mem-

ber of the spectrum ligy.oh =\, and(iii) X, is concave in . THVp[?l  TpVZp]
fa 7. I o X2(H)=7— raiira 27 (13
v, i.e., if y1<v,, then\, <\, . Note that by defining the 477 Ti[ p°] 47° Trlp]
averages in terms d¥p rather thars, the quantitiesy, and
\, are independent of trajectories. Noting thatV?p={p,{p,p}}+{a.{q.p}}, where{} denotes

We note that the dependencelaf on y arises due to the the Poisson bracket, we may now perform the standard quan-
variation in local stretching rates in different regions of tization{A,B}— —(i/%)[A,B] to yield a quantaly, that is
phase space. Hence, for a system where the local stretchimgdependent of the representation. In the Wigner-Wag]
rate is a constant), is independent ofy and equals the representation it has precisely the classical f¢Eg. (13)],
maximum Lyapunov exponent with p replaced by the Wigner functiow/(q,p).

Considerable physical insight emerges by considexing As an example of the insights afforded by this approach
and the quantityy,(t) in Fourier space. That is, con- we consider the cat map on the torus, which is a clas&ical
sider the Fourier expansion of a distribution(q,p)  system[12] and has been shown recenfly] to display
=2nmPnm(D) fam, where f,(p,q)=exp2mi(np+mag)}. smooth quantum-classical correspondence. The dynamics of
We use a two-dimensional discrete Fourier basis for simplicthis system, whose classical and quantal propagators for dis-
ity; all arguments generalize to multiple dimensions andtributions are known analyticallj14], are those of a kicked
Fourier integrals. In Fourier spage(t) is of the form oscillator with Hamiltoniar{11]
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FIG. 1. x as a function of time for the classical elliptic, para-
bolic, and cat maps.

H=p22u+eq?2 >, &(s—t/T), (14)
S=—x

restricted to a torus€q<a, 0<p<hb. The cat map corre-
sponds to the choice=Th/ua=1 andé=—eTa/b=1 and
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FIG. 2. x,(t) for the classical £=0) and quantala=10"1,
102, and 10°®) cat map.

butions, the approximate methods of measuring the separa-
tion of centroids[7] or the growth of second momenit§]
fail to detect the existence of chaos, even for the classical
system. Our results are displayed in Fig. 2.

For the classical cah=0, Ba= Bb=1), shown again for

a=h/ab acts as a dimensionless form of Planck’s constangomparison,x,(t) grows exponentially after a short tran-
for this problem. Two other cases of interest we study are theient, with a rate equal td. The behavior ofy, for the

(stable elliptic map(n=1, £&= —1) and the borderline para-

quantized cat map is shown far=10"°, 10 2, and 10 ..

bolic case(n=1, £&=0). We note that this classical system Near the classical limi{a=10"°, h=1, pa=Bb=316.2

has a constant Jacobian matrix gage y is independent of
Y-
We then anticipate thaf) for the stable systeny oscil-
lates as a function of timeii) y grows linearly for the para-
bolic case, andiii ) a chaotic system haggrowing exponen-
tially in time with the asymptotic rate given by. This

X2 exhibits exponential growth, indistinguishable from the
classical behavior on the finite Fourier gritbf size
2048x 2048 used in our computations. However, asis
increased to 107 (h=1, Ba= Bb=10) the initial growth of

X2 IS seen to be faster than that of the classical cat map,
suggesting that the amount of structure in the quantal distri-

behavior is indeed confirmed computationally, as shown irbution at short times actualliyncreasesrelative to the clas-

Fig. 1, for these three maps. We emphasize thathe be-
havior is independent of the initial distributidthe distribu-
tions used here were randomly initializednd (ii) in the
chaotic case, there is no saturationydt) even though the
phase-space is bounded.

In the quantal case we study the dependencg,(f) on

sical one. This is indeed the case since one expects the quan-
tal W(q,p) to adiabatically follow the classical(q,p), but

with added fringe$15] (interference structurgsSuch inter-
ference structures can be seen in contour maps of the evolv-
ing distributions. For example, an examination of Figs. 1-3
of Ref.[7] att=4T shows clearly that the distribution with

the degree of classicality of the system, that is, the value oft=10"2 has far more structure at finer scales than does the

a. To eliminate kinematical effects of changimgwe con-

distribution with «=10"5. This, of course, implies greater

sider the evolution of Wigner distributions that are initially support for the distribution at larger Fourier node numbers,

of the Gaussian form

Wia.n)— p[ (q—ﬁqo)z} p[ (p—BPo)”
(Q,p)=Ngexg——5 5 e&Xg———3 7 |,
Boy Boy s

where 8 is a scaling variablésee beloy, Ng is a normal-

leading to largery, values. However, supraclassical growth
does not persist for largex or for longer time because a
second quantal effect kicks in: Quantal distributions resist
the growth of structure at scales smaller thaf5], imply-

ing that the support of the distribution travels slowly across
the 1k boundary in Fourier space. This is marked by a clear
slowdown of the growth aj,~100=0(1/a). As « is in-
creased to 10' (h=1, Ba=Bb=23.162, the initial rapid

ization factor, and 8qg,,8p) specifies the location of the growth saturates in one time step, resulting in a slowly grow-
Gaussian of width go,B0) in a phase space of dimen- ing x,. The interplay between the two effects thus implies in
sion B%ab. Sincea=h/B?ab, by increasingd we approach general a finite value ofr at which the quantum system
the classical limit while preserving the ratio acquires structure maximally rapidly for early times. Note
(B%040,1B%ab) of the volume of the initial distribution to also that the initial differences between the various values of
the volume of phase space. Here we choose this ratio gg, in Fig. 2 is exaggerated by the fact that we are using
~0.0175, sufficiently large to display quantum effects atdiscrete time steps, which are themselves of the ordemngf 1/
relatively early times. Note that for these large initial distri- in our model system.
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Since the quantal propagator is a smooth functiorxof exponents directly to the properties of distributions, indepen-
the results at larger values efimply that on the full(infi-  dent of trajectories. Our approach is valid for arbitrary initial
nite) Fourier grid the quantai,, even at the smallest values distributions and asymptotic times, unlike other methods
of a, will ultimately slow down, reflecting the nonergodic [6,7], and has been explicitly derived from the definition of
nature of the quantum mdp4]. However, and this point is Lyapunov exponents, unlike previous conjectuf@s5]. In
significant, for any finite resolution there is alwaysa@suf-  particular, it avoids the need to introduce perturbations to
ficie_ntly small_ such that th_e classical and_ quantal behaviofefine the stability of distributiong3] and avoids basis-
are indistinguishably chaotic. Thus the varidusgovernthe  gependent definitions of chaos in distributidd$ Rather, it
behavior of classical and quantal distributions in preciselyyoyides a consistent understanding of the role of Lyapunov
the same manner in the limit— 0, as manifest in the behav- eynonents in the dynamics of classical distributions and af-
ior of x,. Note that the form ofy,(t) enables us to verify fords a method of connecting Lyapunov exponents to the
this behavior without masking effects arising from the choicepenavior of quantal distributions in the semiclassical limit
of broad initial distributions or from saturation and relax- 5 _,
ation in the finite phase spa¢gee the discussion in R¢]). Note added in proofRecently we found that our work

In summary, we have provided a quantitative demonstrabve”aps that in Y. Gu, Phys. Lett. M9, 95 (1990.
tion of the role of Lyapunov exponents in the behavior of ’

classical and quantal distributions and have identijg(t) This research was supported by the Natural Sciences and
as a measure of the increasingly fine detailed structure of thEngineering Research Council of Canada. A.K.P. would like
distribution. We have thus related the generalized Lyapunoto thank Salman Habib for useful discussions.
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